Longitudinal Psychosocial Predictors of Cognitive Function in Old Adults

D. Lucanin*, E.A. Delale**, J. Despot Lucanin**, A. Koscec Bjelajac**, M. Stambuk**

* University of Applied Health Sciences, Zagreb, Croatia ** University of Zagreb, Croatian Studies, Croatia

Introduction

Independence in old age is as much determined by cognitive functioning as by physical functioning.

Age changes in cognition – regarded as important determinant of adjustment to ageing, quality of life and survival (Allerhand, Gale, and Deary, 2014).

Introduction

Normal cognitive changes - important to understand because:

- they can affect an older adult's daily functioning;
- they can help distinguish normal from disease states (Harada, Natelson Love and Triebel, 2013).

The aim

 Determine the longitudinal predictive contribution of psychosocial factors to the cognitive function in old persons.

Method: Participants

- 167 retirement homes' residents in Zagreb, Croatia, followed-up for 8 years;
- ✤ 33 (20%) men, 134 (80%) women.
- Age: 69-100 yrs, average 84,5 yrs
 (at baseline: 62-93 yrs, average 77 yrs)
- Mobile and not diagnosed with dementia.

Method: Procedures

Measurement was applied three times:

- Baseline: in 2008, and two follow-ups: in 2010 and in 2016;
- Individually, in the form of structured interview, by trained interviewers, at retirement homes.

Method: Instruments / Variables

- Cognitive Function Scale (CAPE, Pattie & Gilleard, 1996),
- measuring: <u>information/orientation</u> 12 questions, and <u>mental ability</u> 4 tasks: counting, saying alphabet, reading, writing;

7

- Score range: 0-23; >8 considerable cognitive decline; 8-15 mild decline
- Sociodemographic (age, sex, education)
- Subjective health (2-items self-perceived health scale, score 2-8)
- Functional Ability (ADL, 14-items scale, score 14-56)
- Social Participation (5-items scale, score 5-15)
- Depression (20-items scale, score 20-80)

Results

Age Changes in Cognitive Function from 2008 to 2016

Age Changes in Cognitive Function - Interpretation

Cognitive function mildly decreased in 8 yrs:

- In 2008: 98,8% participants with good cognitive function (1,2% mild decrease)
- >2016. g. 91,6% participants with good cognitive function (8,4% mild decrease)

Distribution of Difference in Cognitive Score 2008-2016 (Baseline score 2008 – score 2016)

11

Descritpive Statistics

Variables	M - 2008	M - 2010	M - 2016	Range (theor.)	
Age	76,8	78,8	84,5	62	100
Cognitive function	19,4	19,1	17,9	0	23
Self-Perceived Health	5,5	5,3	5,3	2	8
Functional Ability	48,5	46,9	41,8	14	56
Social Participation	8,3	8,4	8,0	5	15
Depression	40,5	42,0	/	20	80

Results interpretation

- Highly functional very old (M= 84,5 yrs) participants!
- Age changes (expected) found in observed variables:
- Mild decrease of physical functioning, cognitive functioning, and social functioning;
- > Mild increase of depression.

RA(hierarch.) Results: Significant Longitudinal Predictors from 2008 (Step 1) & 2010 (Step 2), of Cognitive Function in 2016

Significant Predictor Variables	β	R ²	ΔR ²	
Step 1: 2008 Predictors		.37		
Age	26**	F(7,160)=9.63; p< .001		* 05
Education	.29**			° p< .05 **p< .01
Cognitive function	.26**			
Social Participation	.24**			
Step 2: 2008 & 2010 Predictors		.42	.05	
Step 2: 2008 & 2010 Predictors Age	26**	.42 F(12,155)=6.60; p< .001	.05	
Step 2: 2008 & 2010 Predictors Age Education	26** .28**	.42 F(12,155)=6.60; p< .001	.05	
Step 2: 2008 & 2010 PredictorsAgeEducationCognitive Ability '08.	26** .28** .20*	.42 F(12,155)=6.60; p< .001	.05	
Step 2: 2008 & 2010 PredictorsAgeEducationCognitive Ability '08.Social Participation '08	26** .28** .20* .20*	.42 F(12,155)=6.60; p< .001	.05	

Results Interpretation

- The observed set of predictors explained 37% 42% of the cognitive function variance in 2016. The significant longitudinal predictors were:
- Age and education older age and lower education predict cognitive decline;
- Baseline cognitive function positive long-term prediction of cognitive function;
- Social participation and functional ability social and physical capacity positively predict cognitive function.

Discussion - Findings in accordance with:

- The lifestyle-cognition hypothesis (Marioni, van den Hout, Valenzuela, 2012):
- *"Active life-style prevents age-associated cognitive decline."*and vice versa:
- Transactional model of dynamic risk outcome relationships in successful ageing (Berg, Smith, Henry i Pearce, 2007):
- "Higher cognitive function level enables more active life-style."

Discussion - Limitations:

- Other factors may be contributing: biological, health conditions, psychological, behaviours, etc.
- Findings restrict the generalization to higher-functioning individuals and to specific living conditions.
- Self-report measures.

Conclusion and Implications

- Higher functional level social, physical and cognitive: significantly long-term associated with cognitive function of old persons residing at retirement homes.
- Identifying long-term predictors of cognitive changes has implications for the development of prevention strategies and interventions to delay cognitive impairment in old age and improve quality of life.

THANKS!

Any questions? You can find us at jdespot@hrstud.hr damirl@zvu.hr